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We determine a strong form of the decomposition theorem for proper toric maps over

finite fields.

1 Introduction, Notation, Basic Toric Geometry, and Statements

1.1 Introduction

For a general proper map of varieties over a finite field, the decomposition theorem in [1]

predicts that the direct image of the intersection cohomology complex becomes semisim-

ple after passage to an algebraic closure of the finite field. In this paper, we prove

Theorem 1.1 which establishes that, for proper toric maps of toric varieties, the above

semisimplicity already occurs over the finite field, and the simple direct summands are

described explicitly. In fact, something stronger is proved, see Remark 2.10, namely that

the stalks of the cohomology sheaves of the direct image complex are semisimple Galois-

modules, i.e., there are no non-trivial Jordan blocks in the Jordan canonical form of the

action of Frobenius on these stalks. Recall this kind of semisimplicity is not known even

for the cohomology of smooth projective varieties defined over finite fields.

If the proper toric fibration is surjective with connected fibers, then the direct

summands appearing in the decomposition theorem are Tate-twisted intersection coho-

mology complexes of closures of orbits on the target with constant coefficients; see
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Proper Toric Maps Over Finite Fields 13107

Theorem 1.1.c. For a general proper toric map f, we first Stein factorize the map f = h ◦ g,

we apply the above to the proper toric fibration g, we push forward each direct summand

via the finite toric map h and examine the result; see Theorem 1.1.a and Lemma 2.12.

In order to carry out what above, we first prove Theorem 1.1.b, which here we

state in the special case when the domain is smooth: the cohomology of the fibers over

closed points is trivial in odd degree, and in even degree is pure with eigenvalues of

Frobenius given by a suitable power of the cardinality of the finite field. The triviality in

odd degree, for example, implies that, in the context of proper toric maps, a plane cubic

with a node may not appear as a fiber of a proper toric map (of course, it may appear as

the image of one).

This paper is a companion paper to [2], where the precise form of the decom-

position theorem for proper toric varieties over C, as well as an analog of the purity

statement above, are proved with different methods. The main purpose of [2] is to then

introduce a topological/combinatorial invariant of proper toric fibrations that detects,

for example, whether a given orbit contributes a direct summand to the decomposi-

tion theorem. This turns out to be related to seemingly subtle combinatorial positivity

questions.

The purpose of this paper is also to offer a sample computation in the context

of Q�-adic cohomology over finite fields in a manner which we hope is accessible to the

non-expert. There are two main differences with the situation over C : (1) as mentioned

above, in general the conclusion of the decomposition theorem over an algebraic clo-

sure of a finite field does not seem to hold in its full-strength over a finite field (see

Section 2.1); (2) even if toric maps are defined over Z, the local systems appearing as

coefficients in the decomposition theorem depend on the characteristic of the ground

field (see Remark 2.13).

1.2 Notation

This paper deals with proper toric maps of toric varieties over a finite field. Our main

references are [1, 5].

Toric varieties and toric maps are defined over the ring of integers, hence over

any ground field. We view a toric variety Z = Z(Δ) as the one associated with a fan Δ in

a lattice N ∼= Zn so that dim Z = n. If helpful, we add subscripts: ΔZ , etc. We view Δ also

as a poset: τ ≤ σ iff the cone τ is a face of the cone σ iff V(τ ) ⊇ V(σ ) (reversed inclusion

for the closures V(τ ) and V(σ ) of the orbits O(τ ) and O(σ )). The support of the fan Δ

in NR is denoted by |Δ|. The n-dimensional torus T ⊆ Z acts on Z with smooth action
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13108 M. Andrea A. de Cataldo

map act : Z × T → Z . Each orbit O(σ ) carries a distinguished point zσ which is rational

over the prime subfield of the ground field. We denote by Ω the resulting finite partition

Z = ∐
σ O(σ ) into locally closed smooth subvarieties.

A toric map is a toric map f : X → Y of toric varieties, i.e., the one associated

with a linear map fN : NX → NY of the lattices with the following property: every cone

σ ∈ ΔX has image contained inside a cone of ΔY. This gives rise to the map of posets

fΔ : ΔX → ΔY, sending σ 
→ σ̄ := the smallest cone in ΔY containing the image fN(σ ). If

σ ∈ ΔX, then one verifies that f(xσ ) = yσ̄ .

A toric map is proper iff fNR
(|ΔX|) = |ΔY|. A proper toric fibration is a proper toric

map f : X → Y such that f∗OX =OY. If f is proper toric, then f is a proper toric fibration

iff fN is surjective. A proper toric fibration is surjective with connected fibers. A proper

toric map which is surjective and with connected fibers is not necessarily a proper toric

fibration (e.g., Frobenius).

Unless mentioned otherwise, we work with schemes (separated and of finite type)

over a finite field 0F, of which we fix an algebraic closure F.

We denote schemes over 0F by using the pre-fix 0−, which we remove after

pulling-back to F : e.g., if 0 f : 0 X → 0Y is an 0F-map, then we can pull it back to the

F-map f : X → Y; similarly, for the complexes below. A standard notation is X0, etc.; we

depart from it for graphical reasons.

We work with the “derived” category of mixed complexes Db
m(0 X, Q�), endowed

with the middle perversity t-structure [1, p.126, p.101, p.71], whose elements we simply

call complexes.

By graded vector space M∗, we mean Z-graded: M∗ = ⊕ j∈ZM j = Meven ⊕ Modd. We

say that M∗ is even if Modd = {0}.
Given a finite extension 0F ⊆ 1F ⊆ F, we have the open inclusion of Galois

(pro-finite) groups 1G := Gal(F/1F) ⊆ 0G := Gal(F/0F). If 0C is a complex on 0 X, then the

Z-graded object H∗(X, C ) is a continuous (continuity will not be mentioned further)

0G-module. If x ∈ 0 X(F) is a closed point with residue field a finite extension 1F, then

the graded object H∗(C )x is a 1G-module. The weight-like properties of the cohomology

groups and stalks we consider are well-defined independently of the finite field exten-

sion one works with; see [1, 5.1.12]. Instead of insisting on 0G, 1G, etc., by abuse of

notation, we simply talk about G-modules and their weights.

Given a variety 0 X, we have the associated shifted intersection complex I0 X; if

0 X is smooth, then I0 X = Q�0 X. For convenience, we also use the intersection complex

I0 X := I0 X[dim 0 X], which is a perverse sheaf on 0 X. The intersection cohomology groups

of a variety 0 X are IH∗(X) := H∗(X, IX).
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Proper Toric Maps Over Finite Fields 13109

We have the notions of even, mixed, and pure G-module M∗ : e.g., M∗ is said to

be pure of weight w if M j is pure of weight w + j for every j.

A graded G-module M∗ is said to be Tate if it is even and each M2k ∼= Q
⊕sk

� (−k), for

some sk ∈ Z≥0. Note that a Tate module is semisimple (under the action of the Frobenius

automorphism).

A complex 0C on 0 X is said to be punctually pure of weight w if the graded

G-modules H∗(C )x are pure of weight w for every closed point x ∈ 0 X(F). Similarly, we

have the notion of 0C being even, and of 0C being Tate. In particular, we have the notion

of 0C being pure, punctually pure, even and Tate; e.g., see Theorem 1.1.

By a result of Gabber, the intersection complex I0 X of a variety is pure of weight

zero. The Tate-shifted I0 X(−k) is pure of weight 2k, and IX is pure of weight dim X. By

a result of Deligne, if 0 f : 0 X → 0Y is a proper map of varieties, then R0 f∗I0 X is pure of

weight zero. However, in general, I0 X and R0 f∗I0 X are neither punctually pure, even, nor

Tate.

A complex on a toric variety is said to be Ω-constructible if its restriction to each

orbit has lisse (the notion of lisse sheaf is the Q�-adic analogue of a locally constant

sheaf) cohomology sheaves. A skyscraper constant sheaf at the origin of the affine line

is Ω-constructible, whereas one at the point 1 is not. The intersection complex of a toric

variety 0 Z is Ω-constructible. The direct image complex R0 f∗I0 X via a proper toric map

0 f may fail to be Ω-constructible, e.g., the second closed embedding above (the first one

is not a toric map, according to our definitions).

Given a toric map 0 f : 0 X → 0Y define the cohomology graded sheaf on Y by set-

ting R∗ := ⊕ j Rj f∗IX. Denote the restriction of R∗ to an orbit O(σ ) ⊆ Y by R∗
σ , and its

stalk at a closed point y∈ 0Y(F) by R∗
y , this is a graded G-module. If 0 f is proper, then

proper base change yields R∗
y = H∗( f−1(y), IX) (pull-back/restriction symbols are mostly

omitted throughout the paper).

1.3 Some basic toric algebraic geometry

In this section, we work over an arbitrary ground field. Let Z = Z(Δ) be a toric variety

and let f : X → Y be a toric map. What follows is a list of the properties we need; for

proofs and/or references, see [2].

1.3.1 Toric affine open cover, orbit closures, and partial order

Z is covered by the open affine toric subvarieties Uζ = ∐
ρ≤ζ O(ρ), where ζ ∈ Δ. We have

V(ζ ) := O(ζ ) = ∐
ρ≥ζ O(ρ), and τ ≤ σ iff V(τ ) ⊇ O(σ ).
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13110 M. Andrea A. de Cataldo

1.3.2 Toric varieties of contractible type

The toric variety Z is said to be of contractible type if it is of the form (Z , z) = (Uζ , zζ ),

where the cone ζ spans NR. In this case, z is the unique torus fixed point.

1.3.3 The local product structure of Z along orbits

Given ζ ∈ Δ, any splitting N ∼= Nζ ⊕ N(ζ ) of lattices determines a splitting T ∼= Tζ × T(ζ )

of tori, and an equivariant isomorphism of toric varieties:

Uζ
∼= Uζ ′ × O(ζ ), (1)

where ζ ′ is the cone ζ, viewed in Nζ ⊆ N. One virtue of (1) is that Uζ ′ is of contractible

type and the product assertion is useful in the context of inductive arguments; the same

is true for (2). The isomorphism (1) depends—harmlessly, for us—on the choice of the

splitting of lattices above. The fan in Nζ ′ := Nζ ⊆ N given by ζ ′ and its faces yields a

canonical closed embedding (Uζ ′ , zζ ′) → (Uζ , zζ ), compatible with the non-canonical (1).

1.3.4 The local product structure of a proper toric fibration over the Uσ

Let f be a proper toric fibration. Let σ ∈ ΔY. There is a non-canonical equivariant split-

ting as in (1), and a non-canonical equivariant isomorphism of toric maps, compatible

with (1):

( f−1(Uσ ) → Uσ ) ∼= ( f−1(U ′
σ ) × O(σ )

fσ ′×Id−→ Uσ ′ × O(σ )). (2)

The resulting natural restriction-over-Uσ ′-map fσ ′ is a toric fibration onto a base of con-

tractible type, and we have a natural identification f−1(yσ ) = f−1
σ ′ (yσ ′). In particular, we

get a (TX → TY(σ ))-equivariant non-canonical decomposition:

f−1(O(σ )) ∼= f−1(yσ ) × O(σ ). (3)

1.3.5 Canonical factorization of induced maps between orbits

Let ξ ∈ ΔX and consider the natural map of tori φ : (O(ξ), xξ ) → (O(ξ̄ ), yξ̄ ) induced by

f. The image is a closed subtorus i : (O ′(ξ), yξ̄ ) → (O(ξ̄ ), yξ̄ )), and there is the following

canonical factorization into maps of tori:

φ : O(ξ)
a−→ A

b−→ B
c−→ O ′(ξ)

i−→ O(ξ̄ ), (4)
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Proper Toric Maps Over Finite Fields 13111

where a is a toric fibration (non-canonically, a product projection); b is a geometric quo-

tient map, étale and Galois, by the action of a finite Abelian subgroup of the torus A; c

is a universal homeomorphism, i.e., a homeomorphism that stays such after arbitrary

base change; i is the natural closed embedding above.

1.3.6 The Stein factorization of a toric map

Let f : X → Y be a proper toric map. There is the canonical toric Stein factorization:

f : X
g→ Z

h→ Y, (5)

where g is a proper toric fibration (g∗OX =OZ ; surjective with connected fibers), and h is

toric finite. The normalization of the image f(X) is a toric variety.

1.3.7 Toric resolutions, toric Chow envelopes, and toric completions

There is a proper birational toric map g : W → X such that W is nonsingular; one can

choose W to be quasi projective, so that g is then projective. In particular, if f is proper,

then there is a projective toric map g : W → X such that h := f ◦ g is projective toric.

There is a toric completion of X, i.e., an open immersion j : X → X̄ such that j is

a toric map and X̄ is toric complete.

There are toric completions X ⊆ X̄ and Y ⊆ Ȳ and a proper toric map f̄ : X̄ → Ȳ

extending f.

1.3.8 Equivariant complexes

In what follows, we work over a field that is either finite or algebraically closed. Let

act : Z × T → Z be the torus action on a toric variety. A complex C on Z is equivariant

(the standard definition of equivariance requires the usual cocycle condition; we do not

need it here) if there is an isomorphism act∗C ∼= π∗
Z C . We can extend this notion to the

torus-invariant subschemes of Z . The intersection complex IV(σ ) of the closure of an

orbit is equivariant. Given ν ∈ N, we have the associated co-character λν : Gm → T, and

the associated notions of λν-equivariance. If f : X → Y is a proper toric fibration, then

Rf∗ preserves equivariance.

1.3.9 The retraction lemma

This is where the notion of toric variety of contractible type starts playing a role. Let

f : X → Y be a proper toric fibration onto (Y, y) of contractible type, and let C be an
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13112 M. Andrea A. de Cataldo

equivariant complex on X (the ground field is algebraically closed, or finite). The natural

graded map below is an isomorphism:

H∗(X, C ) = H∗(Y, Rf∗C )
=−→ (R∗ f∗C )y, (6)

where it is understood that if the ground field is finite, then we have passed to an alge-

braic closure, and we have an isomorphism of G-modules. Special case: C = IX; then, by

coupling with proper base change:

I H∗(X) = (R∗ f∗IX)y = H∗( f−1(y), IX). (7)

Special case of the special case: f = IdY; then:

IH∗(Y) =H∗(IY)y. (8)

1.4 The decomposition theorem for proper toric maps over finite fields

Let 0 f : 0 X → 0Y be a proper toric map over a finite field 0F. Let 0 f = 0h ◦ 0g : 0 X → 0 Z → 0Y

be the Stein factorization. For every ζ ∈ Δ0 Z , define, recalling (4):

Evζ := {b ∈ Z | b + dim X − dim V(ζ ) even}, βζ := b + dim X − dim V(ζ )

2
,

0O ′(ζ ) := 0h(0O(ζ )), 0Lζ = 0h∗Q�0 O(ζ ) a lisse sheaf on 0O ′(ζ ) ⊆ 0O(ζ̄ ).

Theorem 1.1 (DT for proper toric maps over finite fields).

(a) Let 0 f : 0 X → 0Y be a proper toric map. There is a DT isomorphism in

Db
m(0Y, Q�) :

Rf∗ I0 X
∼=

⊕
ζ∈Δ0 Z

⊕
b∈Evζ

I
sζ,b

0 O ′(ζ )
(0Lζ )(−βζ )[−b], (9)

where 0O ′(ζ ) := 0h(0O(ζ )); the sheaves 0Lζ = 0h∗Q�0 O(ζ ) on 0O ′(ζ ) are lisse,

semisimple, and pure of weight zero; the sζ,b ∈ Z≥0 are subject to:

(i) sζ,b = sζ,−b, for every b ∈ Evζ ;
(ii) if 0 f is projective, then sζ,b ≥ ∑

l≥1 sζ,b+2l , for every b ≥ 0 in Evζ .

(b) In particular, the pure weight zero R0 f∗I0 X is punctually pure, even and Tate;

for every y∈ 0Y(F), the G-module (R∗ f∗IX)y = H∗( f−1(y), IX) is pure, even and

Tate.
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Proper Toric Maps Over Finite Fields 13113

(c) Let 0 f be a proper toric fibration, for σ ∈ ΩY, and let Evσ , and βσ be as above.

There is a DT isomorphism in Db
m(0Y, Q�) :

Rf∗ I0 X
∼=

⊕
σ∈Ω0Y

⊕
b∈Evσ

I sσ,b

0V(σ )(−βσ ) [−b], (10)

where the sσ,b ∈ Z≥0 are subject to the conditions analogous to (i) and (ii)

above. �

Remark 1.2. Even though statement (a) implies statements (b) and (c), we prove the three

assertions in the following order: assertion (b) is proved by Corollary 2.8, assertion (c)

is proved by Theorem 2.11, and assertion (a) is proved by Theorem 2.14, which builds on

assertion (c). �

Remark 1.3. We may re-write the DT isomorphisms using the shifted IX by setting

2k= 2β, etc. In the case of a proper toric fibration, we get, with sσ,b as in (9):

R0 f∗I0 X
∼=

⊕
σ∈Δ0Y

⊕
k∈Z≥0

Isσ,2k−dim 0 X+dim 0V(σ )

0V(σ ) (−k)[−2k]. (11)

While (10) emphasizes duality, (11) emphasizes eveness. �

Remark 1.4 (DT for proper toric maps over algebraically closed fields). Theorem 1.1 over

finite fields implies the analogous results over any algebraically closed field (remove

0− and (−β)). In fact, assume that char K �= 0 and form the tower of field extensions

0F ⊆ F ⊆ K given by the prime subfield of K and by its algebraic closure in K. Theorem 1.1

over a finite field implies immediately the desired conclusions for K = F. One then pulls-

back further to K and concludes when char K �= 0.

According to [1, Section 6], especially Section 6.1.10, Lemma 6.2.6 and Theorem

6.2.5, relating the situation over an algebraically closed field of characteristic zero to the

one over an algebraic closure of a finite field, the desired conclusion in characteristic

zero follows from the one in positive characteristic.

If the ground field is C and we use the classical topology, then one can reach

analogous conclusions by using Saito’s theory of mixed Hodge modules. �

2 Decomposition Theorem for Proper Toric Maps Over Finite Fields

2.1 General DT package over finite fields

The following is surely well known and follows easily from some of the results in [1]. We

could not find an adequate explicit reference.
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13114 M. Andrea A. de Cataldo

Proposition 2.1 (DT and RHL over 0F). Let 0 f : 0 X → 0Y be a proper map of sepa-

rated 0F-schemes of finite type, let 0 P be a pure perverse sheaf of weight w on 0 X.

Then the direct image complex R0 f∗0 P is pure of weight w and splits non-canonically

into the direct sum
⊕

b
pHb(R0 f∗0 P )[−b] of its shifted perverse direct image com-

plexes; the perverse sheaves pHb(R0 f∗0 P ) are pure of weight w + b and admit the

canonical decomposition by supports as the direct sum
⊕

0Y IC0Y(0Lb,0Y) of finitely

many intersection complexes of 0F-integral subvarieties 0Y ⊆ 0Y, with coefficients pure

lisse sheaves 0Lb,0Y of weight w + b − d0Y on suitable Zariski dense open subsetes

0Y
o ⊆ 0Y.

Assume, in addition, that 0 f is projective and let 0η be the first Chern class of an

0 f-ample line bundle on 0 X. Then the relative hard Lefschetz theorem (RHL) holds: for

every i ≥ 0, the cup product map 0η
i : pH−i(R0 f∗0 P ) −→ pHi(R0 f∗0 P )(i) on the perverse

cohomology sheaves of the direct image is an isomorphism. �

Proof. By virtue of Deligne’s fundamental result [1, 5.1.14], the direct image R0 f∗0 P

is pure of weight w. The perverse sheaves pHb(R0 f∗0 P ) are pure of weight w + b by

[1, Theorem 5.4.1]. They split as indicated by virtue of [1, Corollary 5.3.11], coupled with

a straightforward Noetherian induction.

In the projective case, the RHL is [1, Theorem 5.4.10], and the splitting into the

direct sum of shifted perverse cohomology sheaves is a formal consequence of RHL via

the Deligne–Lefschetz criterion.

The DT for a proper map can be derived formally as follows.

By using [1, Corollary 5.3.11], we first observe that we may assume that 0 P is

the intermediate extension back to 0 X of its own restriction to any Zariski-dense open

subvariety.

We choose a Chow envelope 0h : 0W
0g

��
0 X

0 f
��

0Y of the map 0 f , so

that 0g and 0h are projective and there is a Zariski dense open subvariety 0U ⊆ 0 X over

which 0g is an isomorphism.

Let 0 P ′ be the corresponding intermediate extension to 0W. Since 0g is projective,

we can apply the Deligne–Lefschetz splitting and deduce that 0 P is a direct summand of

R0g∗0 P ′.

The conclusion follows by applying what we have already proved for the pro-

jective 0g and to 0h, and then by using the relation R0h∗ = R0 f∗ ◦ R0g∗ to compare

terms. �
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Remark 2.2. The lisse sheaves 0L on 0Y
o become semisimple, after pull-back to each

integral component of Yo. As we shall see, in the case of proper toric maps with 0 P := I0 X,

the subvarieties 0Y, being torus-orbits, are geometrically integral and, in addition, the

lisse coefficients 0L turn out to be are already semisimple. See Theorems 2.11 and 2.14.

The indecomposable pure perverse sheaves on a 0Y are described in [1, Proposition 5.3.9].

Due to my ignorance, even in the case when 0 P := I0 X, I do not know if the pure lisse 0L

may admit indecomposable direct summands that present Jordan block-type factors of

type En with n≥ 2 : that would be the only obstacle to the semisimplicity of the pure

lisse coefficients 0L on 0Y. �

2.2 First toric consequences of Proposition 2.1

Lemma 2.3. Let 0 Z 0u→ 0U 0 j→ 0V be maps of schemes (separated and of finite type) over a

finite field and let 0C be a pure complex of weight w on 0V . Assume that 0 Z is complete,

0 j is an open immersion, and u∗ : H∗(U, C ) → H∗(Z , C ) is an isomorphism, 0V is smooth.

If the—automatically pure—submodule of lowest weight w of H∗(V, C ) is even and Tate,

then so is H∗(U, C ). �

Proof. This is standard; we freely use basic weight theory [1, 5.1.14]. It is enough to

show that j∗ is surjective. We have that H∗(U, C ) ∼= H∗(Z , C ) has weights ≤ w, because

0 Z is complete, so that the direct image coincides with the extraordinary direct image,

under which the property of having weights ≤ w is stable. H∗(U, C ) has weights ≥ w

because the property of having weights ≥ w is stable under direct image. By com-

bining the two weight inequalities above, we see that H∗(U, C ) is pure of weight w.

Let 0i the closed embedding complementary to 0 j. In view of the fact that the prop-

erty of having weight ≥ w is stable under extraordinary inverse image, the long exact

sequence of relative cohomology H∗(V, C ) → H∗(U, C ) → H∗+1(V, i!i!C ) shows that j∗ is

surjective. �

Lemma 2.4. Let 0 X be a toric variety over a finite field. The intersection complex I0 X is

pure of weight zero and Ω-constructible. �

Proof. Both are well known. We offer a proof of purity for toric varieties based on the

DT. Of course, purity of the intersection complex for any variety over a finite field is a

result of Gabber. We also prove Ω-constructibility as we need some of the details of the

proof in the proof of Lemma 2.5.
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Let 0g : 0W → 0 X be a proper toric resolution of the singularities of 0 X. Proposi-

tion 2.1 implies that I0 X, being a direct summand of the pure weight zero R0g∗Q�0W, is

pure of weight zero.

The proof of Ω-constructibility is by induction on n:= dim 0 X. If n= 0, then we

are done. Assume the desired conclusion holds for every toric variety of dimension at

most n− 1.

Since the open sets of the form 0Uσ are union of orbits and cover 0 X as σ ranges

in ΔX, we may assume that 0 X = 0Uσ . In view of the local product structure 0Uσ
∼= 0Uσ ′ ×

0O(σ ), we may also assume that (0 X, 0x) is of contractible type.

Since 0x is now an orbit, we may replace (0 X, 0x) with 0 X \ 0x. Now, 0 X is covered

by the affine open sets of the form 0Uτ
∼= 0Uτ ′ × 0O(τ ), with τ < σ, so that dim 0Uτ ′ ≤ n− 1,

and we are done. �

Lemma 2.5. Let 0 f : 0 X → 0Y be a proper toric fibration over a finite field. The direct

image complex R0 f∗I0 X is Ω-constructible. �

Proof. As in the proof of Lemma 2.4, we may assume that 0Y = 0Uσ .

According to (2), the intersection complex of 0 f−1(0Uσ ) is a pull-back from the

factor 0 f−1(0Uσ ′). It follows that we may assume that (0Y, 0y) is of contractible type.

We conclude the proof by arguing by induction on the dimension of the base of

contractible type as in the proof of Lemma 2.4. �

Lemma 2.6. Let 0 f : 0 X → 0Y be a proper toric fibration onto a base of contractible type

(0Y, 0y), all over a finite field. Then we have natural isomorphisms of graded G-modules:

I H∗(X) = (R∗ f∗IX)y = H∗( f−1(y), IX). (12)

In particular, we have the natural isomorphism of graded G-modules:

I H∗(Y) =H∗(IY)y. (13)

The graded G-modules (12) and (13) above are pure, even and Tate, hence

semisimple. �

Proof. The first two assertions follow from the retraction lemmas (7) and (8) and proper

base change.

We turn to the proof that the G-modules (12) are pure even and Tate.
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By taking a projective toric resolution of 0 X as in the proof of Lemma 2.4, we

may assume that 0 X is smooth and quasi projective. In particular, we are now dealing

with cohomology, instead of intersection cohomology.

Choose a toric open embedding j : 0 X → 0 X with 0 X toric smooth and projective.

It is well known that the graded G-module H∗(0 X) is pure of weight zero, even

and Tate: it is generated by algebraic cycle classes [5].

We conclude by applying Lemma 2.3 to 0 f−1(0y) → 0 X → 0 X. �

Remark 2.7 (Description of H∗( f−1(y), IX), f proper toric). Let f : X → Y be a proper

toric map over an algebraically closed field and let y∈ Y be a closed point. Let f = h ◦ g :

X → Z → Y be the toric Stein factorization. The fiber f−1(y) is a disjoint union of the

finitely many fibers g−1(zl), with {zl} = h−1(y). Clearly, H∗( f−1(y), IX) = ⊕l H∗(g−1(zl), IX).

Fix zl and take the U (ζ ) with z∈ O(ζ ). By using the local product structure (2) over Uζ , we

may assume that zl = zζ and that (Z , zζ ) is of contractible type. By combining the proofs

of lemmata 2.6 and 2.4, we obtain the following description:

H∗( f−1(y), IX) is a finite direct sum of subquotients of the graded vector spaces

H∗(W̄l , Q�) given by the cohomology of nonsingular projective toric varieties W̄l .

The description remains valid in the context of G-modules if the ground field is

the algebraic closure of a finite field. Similarly, over C, in the context of the classical

Euclidean topology with the rational mixed Hodge structures of the theory of mixed

Hodge modules. �

Corollary 2.8. Let 0 f : 0 X → 0Y be a proper toric map over a finite field. Then the pure

weight zero complexes I0 X and R0 f∗I0 X are punctually pure, even, and Tate. �

Proof. The second statement implies the first one by taking 0 f = Id0 X.

Since the desired conclusions are stable under direct images via finite toric

maps, in view of the toric Stein factorization of the map 0 f, we may assume that 0 f

is a proper toric fibration.

Since the desired conclusions are statements about the stalks and the direct

image complex is Ω-constructible, it is enough to verify that for every distinguished

point 0yσ of any orbit 0O(σ ) ⊆ 0Y, the graded G-module (R∗ f∗IX)yσ
is pure, even and

Tate. This follows immediately from Lemma 2.6. �

Remark 2.9. The punctual purity, etc., of the intersection complex of a toric variety is

proved in [4]. The statement for the direct image seems new. �
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Remark 2.10. Lemma 2.6 tells us that the stalks of the direct image R0 f∗ I0 X are semisim-

ple G-modules. This additional semisimplicity aspect, which should not be confused

with the semisimplicity of the direct image R0 f∗ I0 X, is explored and amplified in the

context of the geometry of Schubert varieties in the paper [3]. �

2.3 Proof of Theorem 1.1.c on proper toric fibrations

The following theorem proves Theorem 1.1.c.

Theorem 2.11 (Proper toric fibrations: DT semisimplicity and RHL over 0F).

Let 0 f : 0 X → 0Y be a proper toric fibration. There are isomorphisms in

Db
m(0Y, Q�) :

R0 f∗ I0 X
∼=

⊕
σ∈Δ0Y

⊕
b∈Z

0 Jσ,b[−b], (14)

0 Jσ,b
∼=

⎧⎪⎪⎨
⎪⎪⎩

0 b + dim X − dim V(σ ) odd,

0 I sσ,b
σ

(
−b + dim X − dim V(σ )

2

)
b + dim X − dim V(σ ) even.

(15)

The integers sσ,b are subject to the following relations:

(i) sσ,b = sσ,−b (Poincaré–Verdier duality); if b + dim X − dim V(σ ) is odd, then

sσ,b = 0.

(ii) If 0 f is projective, then for every b ≥ 0, sσ,b ≥ ∑
l≥1 sσ,b+2l (RHL). �

Proof. Proposition 2.1, coupled with the Ω-constructibility of the direct image complex

in Lemma 2.4, implies the existence of an isomorphism (14), where each 0 Jb,σ is of the

form 0 IV(σ )(0Lb,σ ), with 0Lb,σ lisse, pure of weight b + dim X − dim V(σ ) on 0O(σ ).

By Ω-constructibility, for each j, σ , the mixed sheaf 0 Rj
σ (see the end of

Section 1.2 on notation) is lisse on the orbit 0O(σ ).

The local product structure of 0 f (3) implies that 0 Rj
σ is given by the continuous

representation:

ρ j
σ : π1(0O(σ ), yσ ) −→ π1(0yσ , yσ ) −→ GLQ�

(Rj
yσ

), (16)

where the first homomorphism stems from the natural constant 0F-map 0O(σ ) → 0yσ ,

and the second one from the G-module structure on Rj
yσ

: this means that the lisse sheaf

0 Rj
σ is the pull-back of a lisse sheaf on 0yσ , namely, the G-module Rj

yσ
.

By combining with Corollary 2.8, we see that 0 Rj
σ is zero for j odd and that, for

j even, we have 0 Rj
σ

∼= Q
r
�0 O(σ )

(− j/2), for some r ≥ 0.
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The already-proved existence of an isomorphism (14) as above implies that

0Lb,σ is a direct summand of 0 Rj
σ for j = b + dim X − dim V(σ ), so that we have 0Lb,σ

∼=
Q

s
�0 Oσ

(− j/2), for some integer s, equal to zero if j is odd. This proves (15), as well as the

second part of assertion (i).

Finally, given (14) and (15), assertion (ii) and the first part of (i) are imme-

diate consequences of the relative hard Lefschetz theorem, and of Verdier duality,

respectively. �

2.4 Proof of Theorem 1.1.a on proper toric maps

Let 0 f : 0 X → 0Y be a proper toric map over a finite field 0F and let 0 f = 0h ◦ 0g its Stein

factorization. Since 0g is a proper toric fibration, i.e., the subject of Theorem 2.11, we

turn our attention to the finite map 0h : 0 Z → 0Y, with image 0 f(0 X), a closed subvariety

of 0Y.

Given ζ ∈ Δ0 Z , we have the map of tori 0h(ζ ) : 0O(ζ ) → O(ζ̄ ), with image 0O ′(ζ ) ⊆
O(ζ̄ ). We denote the evident resulting finite map on the closures by 0h(ζ ) : 0O(ζ ) → 0O ′(ζ ).

Lemma 2.12. The Q�-adic sheaf 0Lζ := 0h(ζ )∗Q�0 O(ζ ) on 0O ′(ζ ) is lisse, semisimple, pure,

punctually pure of weight zero, with eigenvalues of geometric Frobenius equal to 1; the

geometric monodromy has eigenvalues roots of unity.

The direct image R0h∗0IV(ζ ) = I0 O ′(ζ )(0Lζ ) is pure of weight zero, punctually pure,

even, and Tate. �

Proof. The map of tori 0h(ζ ) admits the canonical factorization (4). Recalling that the

map being factored is finite: the map 0a must be the identity. The map 0b is a quotient by

a finite abelian group, Γ := Ker 0b, whose order is not divisible by char 0F; in particular

it is étale, and Galois. The map 0c is a universal homeomorphism. The map 0i is the

evident closed embedding.

Since 0a, 0c and 0i are universal homeomorphisms onto their image, they do not

effect the direct image calculations and can be ignored.

It follows that 0Lζ is naturally identified the ordinary direct image sheaf 0b∗Q�,

with 0b the ètale quotient by the action of the finite abelian group Γ. All the listed prop-

erties of 0Lζ follows easily from this description.

The equality statement about the direct image complex follows by observing that

we have the following natural identifications:

R0h∗I0V(ζ ) = 0h∗I0V(ζ ) = 0h(ζ )∗I0V(ζ ) = I
0 O ′(ζ )(0Lζ ) (17)
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the first one is because h is finite; the second one is because the third term is merely a re-

writing of the second; the third identification follows from the fact that the direct image

under the finite map 0h(ζ ) is t-exact for the middle perversity t-structure and hence

preserves intersection complexes with twisted coefficients; clearly, the coefficients of

the direct image can be read on a Zariski-dense open subset, so that they are given

by 0Lζ .

Finally, the last statement follows by the just-established equality and from

Corollary 2.8, applied to 0 X := 0V(ζ ) : for the properties in question are stable under

finite direct image. �

Remark 2.13. The rank of the local system 0Lζ is the cardinality of the abelian group

Γ, which depends on the characteristic of the finite field 0F. �

We can now show that Theorem 2.11 for proper toric fibrations over 0F has the

following natural counterpart for proper toric maps over 0F, which, in turn, establishes

Theorem 1.1.a.

Theorem 2.14 (Proper toric maps: DT semisimplicity and RHL over 0F). Let 0 f : 0 X → 0Y

be a proper toric map over the finite field 0F. There are isomorphisms in Db
m(0Y, Q�) :

R0 f∗ I0 X
∼=

⊕
ζ∈Δ0 Z

⊕
b∈Z

0 Jζ,b[−b], (18)

0 Jζ,b
∼=

⎧⎪⎪⎨
⎪⎪⎩

0, b + dim X − dim V(ζ ) odd,

0 IC
sζ,b

0 O ′(ζ )
(0Lζ )

(
−b + dim X − dim V(ζ )

2

)
, b + dim X − dim V(ζ ) even.

(19)

The complex R0 f∗ I0 X is pure of weight zero, punctually pure, even, and Tate.

The integers sζ,b are subject to the following relations:

(i) sζ,b = sζ,−b (Poincaré-Verdier duality); if b + dim Z − dim V(ζ ) is odd, then

sζ,b = 0.

(ii) If 0 f is projective, then for every b ≥ 0, sζ,b ≥ ∑
l≥1 sζ,b+2l,ζ (RHL). �

Proof. We have the Stein factorization 0 f = 0h ◦ 0g. We first apply Theorem 2.11, (15) to

the proper fibration 0g. We form the R0g∗ of each resulting direct summand. We apply

Lemma 2.12, which remains valid also after arbitrary Tate twists, to each resulting

term. �
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